If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-t^2+5t+14
We move all terms to the left:
0-(-t^2+5t+14)=0
We add all the numbers together, and all the variables
-(-t^2+5t+14)=0
We get rid of parentheses
t^2-5t-14=0
a = 1; b = -5; c = -14;
Δ = b2-4ac
Δ = -52-4·1·(-14)
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-9}{2*1}=\frac{-4}{2} =-2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+9}{2*1}=\frac{14}{2} =7 $
| 5x+102/9=8 | | 4n-9=75 | | 3x+2(5x-7)-12-4(x-3)=0 | | -4k+7+6=30 | | 8/5x+3/10x=48/15 | | -2(v+5)=6 | | 1.5x=41.4 | | 1/5x+6/5x=1/7x+8/7 | | (y+10)^2-625=0 | | 2(-3x+7)=6 | | ((1/84*x)-13/40)((15/62*x)+57/62)=0 | | 5x+10+50+2x=180 | | (1/2)n+3=47n+3 | | 56/x-4=-52 | | 13=-4+d | | 5z=05 | | (3+m)=6 | | 56/x+4=-52 | | 56/x/4=-52 | | (k+9)=12 | | 56/x4=-52 | | 2x=12=24 | | t/6-20=9 | | -3(-6n-7)=-105 | | (2x+13)(2x+13)=0 | | 23=(y/4)-5 | | 9(w+4)=90 | | 7y=6y-4 | | -4=30-9r | | 115=-5(1-6n) | | 3(4x-5)-2=12 | | -7=g-54-6 |